• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films

    Thumbnail
    Author
    Nogay, G.; Stuckelberger, J.; Wyss, P.; Rucavado, E.; Allebe, C.; Koida, T.; et al.
    Metadata
    Show full item record
    Abstract
    We present a detailed optimization of a hole selective rear contact for p-type crystalline silicon solar cells which relies on full-area processes and provides full-area passivation. The passivating hole-contact is based on a layer stack comprising a chemically grown thin silicon oxide, an intrinsic silicon interlayer, and an in-situ boron doped non-stoichiometric silicon-rich silicon-carbide layer on top. After deposition, the structure is annealed at 775-900 degrees C to diffuse dopant impurities to the c-Si wafer and a hydrogenation step is carried out. It is shown that hydrogenation is essential to obtain high quality surface passivation. In particular, we compare the effect of annealing in forming gas and annealing with a silicon-nitride overlayer as hydrogen source. We present a systematic optimization of the hole-selective contact, for which we varied the doping concentration, annealing parameters and report the implied open circuit voltage (iV(oc)) and combined specific contact resistivity (p(c)). It is observed that for highly doped layers the optimum annealing temperature for high quality surface passivation is 800 degrees C while for lowly doped layers the optimum annealing condition shifts to 850 degrees C. Excellent surface passivation and efficient current transport is evidenced by an iV(oc) value of 718 mV which corresponds to a saturation current density (J(0)) of 11.5 fA/cm(2) and a p(c) of 17 mg Omega cm(2) on p-type wafers. Moreover, the evolution of the boron diffusion profiles with different annealing conditions is investigated. Finally, we demonstrate proof-of concept p-type hybrid solar cells employing the full-area hole-selective rear contact presented here and standard heterojunction front electron contact. The excellent efficiency potential of our passivating rear contact is highlighted by conversion efficiencies up to of 21.9%, enabling V-oc of 708 mV, FF of 79.9% and J(sc) of 38.7 mA/cm(2).
    Publication Reference
    Solar Energy Materials and Solar Cells, vol. 173, pp. 18-24, Dec 2017.
    Year
    2017
    URI
    https://yoda.csem.ch/handle/20.500.12839/177
    Collections
    • Research Publications

    Related items

    Showing items related by title, author, creator and subject.

    • Exploring silicon carbide- and silicon oxide-based layer stacks for passivating contacts to silicon solar cells 

      Loper, P.; Nogay, G.; Wyss, P.; Hyvl, M.; Procel, P.; Stuckelberger, J.; et al. (2017)
      We present the development of passivating contacts for high-efficiency silicon solar cells using silicon oxide (SiOx) and silicon carbide (SiCx)-based layers. We discuss a comprehensive optimization of a SiCx-based passivating ...
    • Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells 

      Nogay, G.; Stuckelberger, J.; Wyss, P.; Jeangros, Q.; Allebe, C.; Niquille, X.; et al. (2016)
      The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative ...
    • Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells 

      Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, C.; Debrot, F.; et al. (2016)
      We present a novel passivating contact structure based on a nanostructured silicon-based layer. Traditional poly-Si junctions feature excellent junction characteristics but their optical absorption induces current losses ...

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV