• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A passivating contact for silicon solar cells formed during a single firing thermal annealing

    Thumbnail
    Author
    Ingenito, A.; Nogay, G.; Jeangros, Q.; Rucavado, E.; Allebe, C.; Eswara, S.; et al.
    Metadata
    Show full item record
    Abstract
    Passivating contacts are indispensable for achieving high conversion efficiency in crystalline-silicon solar cells. Their realization and integration into a convenient process flow have become crucial research objectives. Here, we report an alternative passivating contact that is formed in a single post-deposition annealing step called ''firing'', an essential step for current solar cell manufacturing. As firing is a fast (<10 s) and high-temperature (>750 degrees C) anneal, the required microstructural and electrical properties of the passivating contact are stringent. We demonstrate that tuning the carbon content of boron-doped silicon-based thin films inhibits firing-induced layer delamination without preventing a partial crystallization. The latter promotes charge-carrier selectivity, even in the absence of a diffused doped region beyond the oxide, by inducing hole accumulation near the wafer surface. We fabricated proof-of-concept solar cells employing the developed technology, demonstrating an open circuit voltage of 698 mV and an efficiency of 21.9%, and show how it could be a drop-in replacement for today''s rear contacts based on locally opened dielectric passivation stacks.
    Publication Reference
    Nature Energy, vol. 3 (9), pp. 800-808, Sep 2018.
    Year
    2018
    URI
    https://yoda.csem.ch/handle/20.500.12839/260
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV