• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carrier scattering mechanisms limiting mobility in hydrogen-doped indium oxide

    Thumbnail
    Author
    Husein, S.; Stuckelberger, M.; West, B.; Ding, L.; Dauzou, F.; Morales-Masis, M.; et al.
    Metadata
    Show full item record
    Abstract
    Hydrogen-doped indium oxide (IO:H) has recently garnered attention as a high-performance transparent conducting oxide (TCO) and has been incorporated into a wide array of photovoltaic devices due to its high electron mobility (>100 cm(2)/V s) and transparency (>90% in the visible range). Here, we demonstrate IO:H thin-films deposited by sputtering with mobilities in the wide range of 10-100 cm(2)/V s and carrier densities of 4 x 10(18) cm(-3) -4.5 x 10(20) cm(-3) with a large range of hydrogen incorporation. We use the temperature-dependent Hall mobility from 5 to 300 K to determine the limiting electron scattering mechanisms for each film and identify the temperature ranges over which these remain significant. We find that at high hydrogen concentrations, the grain size is reduced, causing the onset of grain boundary scattering. At lower hydrogen concentrations, a combination of ionized impurity and polar optical phonon scattering limits mobility. We find that the influence of ionized impurity scattering is reduced with the increasing hydrogen content, allowing a maximization of mobility >100 cm(2)/V s at moderate hydrogen incorporation amounts prior to the onset of grain boundary scattering. By investigating the parameter space of the hydrogen content, temperature, and grain size, we define the three distinct regions in which the grain boundary, ionized impurity, and polar optical phonon scattering operate in this high mobility TCO. Published by AIP Publishing.
    Publication Reference
    Journal of Applied Physics, vol. 123 (24), p. 9, Jun 2018.
    Year
    2018
    URI
    https://yoda.csem.ch/handle/20.500.12839/265
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV