• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanocrystalline Silicon Oxide Stacks for Silicon Heterojunction Solar Cells for Hot Climates

    Thumbnail
    Author
    Haschke, J.; Monnard, R.; Antognini, L.; Cattin, J.; Abdallah, A. A.; Aissa, B.; et al.
    Metadata
    Show full item record
    Abstract
    Today, solar cells are generally optimized for 25 degrees C, whereas in most climates, especially hot and sunny ones, the operating device temperature is usually much higher, e.g. in the range of 60 degrees C. We investigate the use of n-doped nanocrystalline silicon oxide layers (nc-SiOx:H(n)) as front contact stacks in silicon heterojunction solar cells and compare them with oxide-free front contacts. Whereas a short-circuit current density of 41 mAcm(-2) could be obtained due to the increased transparency of the nc-SiOx:H(n) layers, the fill-factor is drastically reduced and leads to a reduced efficiency at 25 degrees C. Albeit the FF can be partly recovered at 60 degrees C, the highest efficiencies at 60 degrees C were so far obtained for the solar cells with oxide-free front contact stacks.
    Publication Reference
    in Siliconpv 2018: The 8th International Conference on Crystalline Silicon Photovoltaics. vol. 1999 (Issue), C. Ballif, R. Brendel, S. Glunz, G. Hahn, J. Poortmans, P. J. Ribeyron, et al., Eds., ed Melville: Amer Inst Physics, 2018.
    Year
    2018
    URI
    https://yoda.csem.ch/handle/20.500.12839/266
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV