• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative performance analysis of stand-alone, off-grid solar-powered sodium hypochlorite generators

    Thumbnail
    Author
    Chinello, E.; Modestino, M. A.; Schuttauf, J. W.; Coulot, L.; Ackermann, M.; Gerlich, F.; et al.
    Metadata
    Show full item record
    Abstract
    Sodium hypochlorite (NaClO) is a chemical commodity widely employed as a disinfection agent in water treatment applications. Its production commonly follows electrochemical routes in an undivided reactor. Powering the process with photovoltaic (PV) electricity holds the potential to install stand-alone, independent generators and reduce the NaClO production cost. This study reports the comparative assessment of autonomous, solar-powered sodium hypochlorite generators employing different photovoltaic (PV) technologies: silicon hetero-junction (SHJ) and multi-junction (MJ) solar cells. For Si hetero-junctions, the series connection of either four or five SHJ (4SHJ and 5SHJ, respectively) cells was implemented to obtain the reaction potential required. MJ cells were illuminated by a novel planar solar concentrator that guarantees solar tracking with minimal linear displacements. The three solar-hypochlorite generators were tested under real atmospheric conditions, demonstrating solar-to-chemical conversion efficiencies (SCE) of 9.8% for 4SHJ, 14.2% for 5SHJ and 25.1% for MJ solar cells, respectively. Simulations based on weather databases allowed us to assess efficiencies throughout the entire model year and resulted in specific sodium hypochlorite yearly production rates between 7.2-28 g(NaClO) cm(-2) (referred to the PV surface), depending on the considered PV technology, location, and deployment of electronics converters. The economic viability and competitiveness of solar hypochlorite generators have been investigated and compared with an analog disinfection system deploying ultraviolet lamps. Our study demonstrates the feasibility of off-grid, solar-hypochlorite generators, and points towards the implementation of SHJ solar cells as a reliable technology for stand-alone solar-chemical devices.
    Publication Reference
    Rsc Advances, vol. 9 (25), pp. 14432-14442, 2019.
    Year
    2019
    URI
    https://yoda.csem.ch/handle/20.500.12839/365
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV