Show simple item record

dc.contributor.authorOstojic, D.
dc.contributor.authorGuglielmini, S.
dc.contributor.authorMoser, V.
dc.contributor.authorFauchere, J. C.
dc.contributor.authorBucher, H. U.
dc.contributor.authorBassler, D.
dc.contributor.authoret al.
dc.date.accessioned2021-12-13T16:32:04Z
dc.date.available2021-12-13T16:32:04Z
dc.date.issued2020
dc.identifier.citationin Oxygen Transport to Tissue Xli. vol. 1232 (Issue), P. D. Ryu, J. C. LaManna, D. K. Harrison, and S. S. Lee, Eds., ed Cham: Springer International Publishing Ag, 2020, pp. 285-290.
dc.identifier.urihttps://yoda.csem.ch/handle/20.500.12839/402
dc.titleReducing False Alarm Rates in Neonatal Intensive Care: A New Machine Learning Approach
dc.typeProceedings Article
dc.type.csemdivisionsDiv-M
dc.type.csemresearchareasDigital Health


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Research Publications
    The “Research Publications” collection provides bibliographic information for scientific papers including conference proceedings and presentations.

Show simple item record