• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    Thumbnail
    Author
    Werner, J.; Barraud, L.; Walter, A.; Brauninger, M.; Sahli, F.; Sacchetto, D.; et al.
    Metadata
    Show full item record
    Abstract
    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm(2)), is still far from standard industrial sizes. We present a 1 cm(2) near-infrared transparent perovskite solar cell with 14.5% steady-state efficiency, as compared to 16.4% on 0.25 cm(2). By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency of 25.2%, with a 0.25 cm(2) top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm(2) large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.
    Publication Reference
    Acs Energy Letters, vol. 1 (2), pp. 474-480, Aug 2016.
    Year
    2016
    URI
    https://yoda.csem.ch/handle/20.500.12839/93
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV