• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thoracic EIT in 3D: experiences and recommendations

    Thumbnail
    Author
    Grychtol, Bart?omiej; Schramel, Johannes Peter; Braun, Fabian; Riedel, Thomas; Auer, Ulrike; Mosing, Martina; Braun, Christina; Waldmann, Andreas D; Böhm, Stephan H; Adler, Andy
    Metadata
    Show full item record
    Abstract
    Objective: In EIT applications to the thorax, a single electrode plane has typically been used to reconstruct a transverse 2D ‘slice’. However, such images can be misleading as EIT is sensitive to contrasts above and below the electrode plane, and ventilation and aeration inhomogeneities can be distributed in complex ways. Using two (or more) electrode planes, 3D EIT images may be reconstructed, but 3D reconstructions are currently little used in thoracic EIT. In this paper, we investigate an incremental pathway towards 3D EIT reconstructions, using two electrode planes to calculate improved transverse slices as an intermediate step. We recommend a specific placement of electrode planes, and further demonstrate the feasibility of multi-slice reconstruction in two species. Approach: Simulations of the forward and reconstructed sensitivities were analysed for two electrode planes using a ‘square’ pattern of electrode placement as a function of two variables: the stimulation and measurement ‘skip’, and the electrode plane separation. Next, single- versus two-plane measurements were compared in a horse and in human volunteers. We further show the feasibility of 3D reconstructions by reconstructing multiple transverse and, unusually, frontal slices during ventilation. Main results: Using two electrode planes leads to a reduced position error and improvement in off-plane contrast rejection. 2D reconstructions from two-plane measurements showed better separation of lungs, as compared to the single plane measurements which tend to push contrasts in the center of the image. 3D reconstructions of the same data show anatomically plausible images, inside as well as outside the volume between the two electrode planes. Significance: Based on the results, we recommend EIT electrode planes separated by less than half of the minimum thoracic dimension with a ‘skip 4’ pattern and ‘square’ placement to produce images with good slice selectivity.
    Publication Reference
    Physiological Measurement, vol. 40 (7), pp. 074006
    Year
    2019-08-02
    URI
    https://yoda.csem.ch/handle/20.500.12839/942
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV