• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sepsis Detection Using Missingness Information

    Thumbnail
    Author
    Aguet, Clementine; Van Zaen, Jérôme; Lemay, Mathieu
    Metadata
    Show full item record
    Abstract
    Sepsis is one of the leading causes of death in hospital. An early detection is crucial to reduce its consequences and mortality. The challenge of Computing in Cardiology 2019 is addressing this issue by providing about 40,000 records from intensive care unit patients. As clinical measurements are collected at irregular frequencies, this dataset is missing many observations. Simply discarding missing values is counterproductive. Indeed, it has been observed that missing data patterns hold relevant information regarding the patient health state. To take advantage of this information, we propose a sepsis detection model incorporating representations of missingness information. This model is a recurrent neural network network composed of two gated recurrent unit (GRU) layers to capture long-term dependencies and a sigmoid layer to output a probability of sepsis. First, the model is trained by simply imputing missing values in the dataset. Then, the dataset is extended with the pattern of missing values. Finally, a GRU cell modi?ed to that take into account missing data is evaluated. Our best model achieves an utility of 0.00 on the grading dataset.
    Publication Reference
    2019 Computing in Cardiology Conference, Singapore (Singapore)
    Year
    2019-09-08
    URI
    https://yoda.csem.ch/handle/20.500.12839/948
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV