• Login
    View Item 
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    •   YODA Home
    • CSEM Archive
    • Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear filtering of an optical pulse train using dissipative Kerr solitons

    Thumbnail
    Author
    Brasch, Victor; Obrzud, Ewelina; Lecomte, Steve; Herr, Tobias
    Metadata
    Show full item record
    Abstract
    The capability to store light for extended periods of time enables optical cavities to act as narrowband optical filters, whose linewidth corresponds to the cavity’s inverse energy storage time. Here, we report on nonlinear filtering of an optical pulse train based on temporal dissipative Kerr solitons in microresonators. Our experimental results in combination with analytical and numerical modeling show that soliton dynamics enables information storage about the system’s physical state longer than the cavity’s energy storage time, thereby giving rise to a filter width that can be more than an order of magnitude below the cavity’s intrinsic linewidth. Such nonlinear optical filtering can find immediate applications in optical metrology, and low-timing jitter ultrashort optical pulse generation and potentially opens new avenues for microwave photonics.
    Publication Reference
    Optica, vol. 6 (11), pp. 1386-1393
    Year
    2019-11-20
    URI
    https://yoda.csem.ch/handle/20.500.12839/963
    Collections
    • Research Publications

    Browse

    All of YODACommunities & CollectionsBy Issue DateAuthorsTitlesResearch AreasBusiness UnitsThis CollectionBy Issue DateAuthorsTitlesResearch AreasBusiness Units

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV