Active Façades: Life Cycle Environmental Impacts and Savings of Photovoltaic Power Plants Integrated into the Building Envelope

No Thumbnail Available
Author
Itten, René
Stucki, Matthias
Clua Longas, Angela
Cattaneo, Gianluca
Abstract
Increased energy supply from photovoltaics is a main priority in the “Energy Strategy 2050”. Within the joint research project "Next generation photovoltaics" funded by the Swiss National Science Foundation, we analysed different options for the enhanced integration of photovoltaic technologies into the envelope of Swiss buildings (BIPV). The PV modules for building integration are using novel monolithic silicon heterojunction organometallic perovskite tandem cells (SHJ-PSC) with adaptions to improve the visual acceptance. In a joint effort of product developers, architects and scientists, this project aimed at providing pathways for the widescale use of BIPV façade solutions, and developing integrated designs based on emerging high-efficiency module technologies to improve the visual aspect and acceptance of PV systems installed in Switzerland. These so-called active façades incorporating BIPV modules to generate electricity can provide a significant contribution to the energy transition away from fossil and nuclear fuels. We compared the environmental impacts of different façade construction systems with and without SHJ-PSC BIPV modules with improved visual design, using a prospective life cycle assessment with a time horizon of 2025. The comparison includes a conventional brick and roughcast façade, a timber frame façade, and the Advanced Active Façade (AAF), which integrates SHJ-PSC BIPV modules in a low embodied impact façade substructure. In addition, we compared the environmental impacts caused by the construction of the above described façades with the environmental impacts saved due to the electricity produced by BIPV modules incorporated into the AAF.
Publication Reference
EU PVSEC 2019, 4DO.4.4,
Year
2019-09-01
Sponsors