Toward the Next Generation of Spine Bioreactors: Validation of an Ex Vivo Intervertebral Disc Organ Model and Customized Specimen Holder for Multiaxial Loading

Thumbnail Image
Secerovic, Amra
Ristaniemi, Aapo
Cui, Shangbin
Li, Zhen
Soubrier, Astrid
Alini, Mauro
Ferguson, Stephen J
Weder, Gilles
Heub, Sarah
Ledroit, Diane
A new generation of bioreactors with integrated six degrees of freedom (6 DOF) aims to mimic more accurately the natural intervertebral disc (IVD) load. We developed and validated in a biological and mechanical study a specimen holder and corresponding ex vivo IVD organ model according to the bioreactor requirements for multiaxial loading and a long-term IVD culture. IVD height changes and cell viability were compared between the 6 DOF model and the standard 1 DOF model throughout the 3 weeks of cyclic compressive loading in the uniaxial bioreactor. Furthermore, the 6 DOF model and holder were loaded for 9 days in the multiaxial bioreactor under development using the same conditions, and the IVDs were evaluated for cell viability. The interface of the IVD model and specimen holder, enhanced with fixation screws onto the bone, was tested in compression, torsion, lateral bending, and tension. Additionally, critical motions such as tension and bending were assessed for a combination of side screws and top screws or side screws and adhesive. The 6 DOF model loaded in the uniaxial bioreactor maintained similar cell viability in the IVD regions as the 1 DOF model. The viability was high after 2 weeks throughout the whole IVD and reduced by more than 30% in the inner annulus fibrous after 3 weeks. Similarly, the IVDs remained highly viable when cultured in the multiaxial bioreactor. In both models, IVD height changes after loading were in the range of typical physiological conditions. When differently directed motions were applied, the holder-IVD interface remained stable under hyper-physiological loading levels using a side screw approach in compression and torsion and the combination of side and top screws in tension and bending. We thus conclude that the developed holding system is mechanically reliable and biologically compatible for application in a new generation of multiaxial bioreactors.
Publication Reference
ACS Biomater. Sci. Eng. 2022, 8, 9, 3969–3976
This work was supported by the Swiss National Science Foundation under grant number 189915; The AO Foundation and AO Spine.