Large angle flexure pivot development for future science payloads for space applications

dc.contributor.authorSpanoudakis, Peter
dc.contributor.authorKiener, Lionel
dc.contributor.authorCosandier, Florent
dc.contributor.authorSchwab, Philippe
dc.contributor.authorGiriens, Laurent
dc.contributor.authorKruis, Johan
dc.contributor.authorGrivon, Daniel
dc.contributor.authorPsoni, Georgia
dc.contributor.authorVrettos, Christos
dc.contributor.authorBencheikh, Nabil
dc.date.accessioned2022-02-14T17:07:49Z
dc.date.available2022-02-14T17:07:49Z
dc.date.issued2019
dc.description.abstractAn innovative design of a Large Angle Flexure Pivot (LAFP) is described. It combines the advantages of flexure mechanisms while surpassing one of their few flaws, small displacement strokes. The LAFP design exceeds these angular limitations to reach a deflection of 180° (±90°). The centre shifts laterally by less than ±35 ?m throughout the full rotation range. The LAFP is meant to be mounted in pairs, coaxially and with the payload between them. The intended application of the LAFP is to angularly guide an optical component in a space environment for future science missions operating in a cryogenic environment. A dedicated performance test bench was developed and manufactured to test the pivot characteristics notably the lateral shift using Eddy current sensors. The test bench incorporates a representative dummy payload for mass and inertia. Extensive FEM analysis has been performed to validate the design at component level and further analysis with the pivots mounted with a representative payload on a test bench for random vibration, shock and thermal cycling environment. The second test bench for the vibration and shock tests has been manufactured incorporating a simplified launch locking device. The performance tests have confirmed a lateral shift of less than ±35 ?m over an angular range of ±90°. The pivots have been successfully tested and survived vibration loads for high level sine at 24 g and random vibration at 12 grms in all three directions.
dc.identifier.citation9th EASN International Conference on Innovation in Aviation & Space, Athens (Greece), pp. 07016
dc.identifier.doi10.1051/matecconf/201930407016
dc.identifier.urihttps://hdl.handle.net/20.500.12839/697
dc.identifier.urlhttps://www.matec-conferences.org/10.1051/matecconf/201930407016
dc.titleLarge angle flexure pivot development for future science payloads for space applications
dc.typeProceedings Article
dc.type.csemdivisionsBU-I
dc.type.csemresearchareasScientific Instrumentation
Files