Light-induced performance increase of silicon heterojunction solar cells

No Thumbnail Available
Author
Kobayashi, E.
De Wolf, S.
Levrat, J.
Christmann, G.
Descoeudres, A.
Nicolay, S.
et al.
DOI
https://doi.org/10.1063/1.4964835
Abstract
Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si: H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si: H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented. Published by AIP Publishing.
Publication Reference
Applied Physics Letters, vol. 109 (15), p. 5, Oct 2016.
Year
2016
Sponsors