Glycoprofiling with micro-arrays of glycoconjugates and lectins

Thumbnail Image
Angeloni, Silvia
Ridet, J.L.
Kusy, N.
Gao, Hui
Sigrist, Hans
Sprenger, Nobert
To facilitate deciphering the information content in the glycome, thin film-coated photoactivatable surfaces were applied for covalent immobilization of glycans, glycoconjugates, or lectins in microarray formats. Light-induced immobilization of a series of bacterial exopolysaccharides on photoactivatable dextran-coated analytical platforms allowed covalent binding of the exopolysaccharides. Their specific galactose decoration was detected with fluorescence-labeled lectins. Similarly, glycoconjugates were covalently immobilized and displayed glycans were profiled for fucose, sialic acid, galactose, and lactosamine epitopes. The applicability of such platforms for glycan profiling was further tested with extracts of Caco2 epithelial cells. Following spontaneous differentiation or on pretreatment with sialyllactose, Caco2 cells showed a reduction of specific glycan epitopes. The changed glycosylation phenotypes coincided with altered enteropathogenic E. coli adhesion to the cells. This microarray strategy was also suitable for the immobilization of lectins through biotin-neutravidin-biotin bridging on platforms functionalized with a biotin derivatized photoactivatable dextran. All immobilized glycans were specifically and differentially detected either on glycoconjugate or lectin arrays. The results demonstrate the feasibility and versatility of the novel platforms for glycan profiling.
Publication Reference
Glycobiology 15(1):31-41